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Abstract. The conservation of the momentum density on the basis of the Pokrovsky- 
Khalatnikov Hamiltonian technique, suitable for superfluids, is examined. It is demon- 
strated that the momentum density j ( t ,  x)  is conserved when the local behaviour of the 
curl of the superfluid velocity U''' is described for 3He-A by the Mermin-Ho formula and 
for superfluid 4He, in a simply connected region, by the Landau formula. It is conserved 
also in the case of special relations between j and curl U"). In the case of the existence 
of the vortex lines the translational invariance of the system is violated and equations of 
motion for the momentum density contain extra terms with 'sources' of the momentum. 

In this paper we are interested in examination of the conservation of the momentum 
density for the superfluids 3He-A and He-11. For this purpose it is convenient to use 
the Hamiltonian technique developed for the hydrodynamics of superfluids (Pokrovsky 
and Khalatnikov 1976). This technique has been applied to derivation of the hydrody- 
namic equations for 3He-A (Khalatnikov and Lebedev 1977). 

In the monograph by Lamb (1932) the Clebsch transformation of the hydrodynamic 
equations is presented. The three components of momentum density are expressed in 
terms of three parameters cp, f, y 

(1 )  

The parameters f and y are called the Clebsch variables. Further, after defining 
the function H, which can play the role of a Hamiltonian, the following equations 
were derived: 

pv = pV cp + f 0 y = j .  

- -_  9- + V . V .  9 y  aH - 9f aH - 
at  ay  a t  af a t  a t  

They resemble the Hamiltonian equations for canonically conjugate variables (f, y ) .  
It is worth remembering that the monograph was first published in 1829 (Lamb 1829). 
Equations (2)  suggest the possibility of developing the Hamiltonian formalism in 

classical and two-fluid hydrodynamics. 
The realisation of this possibility was presented in the papers by Khalatnikov, 

Lebedev and Pokrovsky (Pokrovsky and Khalatnikov 1976, Khalatnikov and Lebedev 
1977). In these papers the expression for the momentum density contains more 
parameters than are given in (1). 
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The hydrodynamics of a normal fluid is described by the conservation laws for the 
following densities: particles p, momentum j and energy E or entropy S. 

In the case of superfluids the situation is more complicated and in the hydrodynamic 
description we should additionally include equations for quasiconserved quantities 
connected with broken symmetries. 

In the case of superfluid 4He the gauge symmetry is broken (additional hydrody- 
namic equation for the velocity U'') of the superfluid component). 

In the case of superfluid 3He-A, the complications go further. Besides the gauge 
symmetry, the rotation symmetry in real space is broken, because the direction described 
by the unit vector I (the intrinsic pair orbital momentum L"' is expressed in terms of 
1, L'" = (h/2m)pI)  is locally preferred. Finally, the rotation symmetry in spin space 
is broken because of the preferred direction described by the unit vector d (additional 
hydrodynamic equations for U"), I,  d ) .  

The proposed Hamiltonian technique allowed us to derive, in an elegant way, the 
hydrodynamic equations for superfluid 4He and 3He-A (Pokrovsky and Khalatnikov 
1976, Khalatnikov and Lebedev 1977). Thus the correctness of the proper choice of 
the canonically conjugated variables was wholly verified. Further, it was shown 
(Galasiewicz 1987), on the basis of the condition for invariance of the energy density 
with respect to rotation (Khalatnikov and Lebedev 1977), that the density of the total 
angular momentum is conserved, although the density of external momentum L'e) and 
intrinsic angular momentum L"' are separately not conserved. 

Khalatnikov and Lebedev continued investigations of equations of quantum liquids 
on the basis of canonical equations (Khalatnikov and Lebedev 1978, 1980, Lebedev 
and Khalatnikov 1977, 1978). 

In the present paper, the considerations of the conservation of momentum density 
have shown that the previously mentioned Hamiltonian technique can give more 
information about a superfluid system than obtained hitherto. Namely, one can take 
into consideration, in a natural way, the presence of singularities, i.e. vortex lines. 

The Hamiltonian describing 3He-A is of the form (Khalatnikov and Lebedev 1977) 

where 8 is the density of energy in the frame with t)"' = 0 and 

a8 a8 
al, av,l, 

d 8 = d 8(4' + - dl, + - dV,Ik 

(4) 

where p is defined by (7). The order parameter for 'He-A (without spin variables) is 
given by a complex vector 

4 = 41 + i 4 2  4 j 4 k  = sjk j ,  k = 1, 2 .  ( 5 )  
With the help of the order parameter, i.e. +,, &, we can define in the A phase 

some additional quantities like the intrinsic pair orbital momentum I and the superfluid 
velocity U") 

1 = 41 x 42 U'') = ~a - ( f 1 / 2 m ) 4 ~ ~ + ,  . ( 6 )  
The equations of motion for I and U(') should be added to the equations for the 

conserved densities ( p ,  j ,  E ) .  
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The momentum density j which is of interest to us is defined by 

j = p + p ~ " '  p = sop + f v y .  (7) 

Heref and y are Klebsch variables. We have in the Hamiltonian (3)  three pairs ( p ,  a ) ,  
( S ,  p ) ,  (f, y )  of canonically conjugate variables. 

The Hamilton equations of interest to us are 

6H 9- - --= - T -  U ~ " ' V , p  as 6 H  
a t  sp a t  6s 
_--- - - - V , ( S v ! " ' )  

a y  6~ _ -  ---= - v y v , y  a f  6 H  
a t  ay a t  sf 
_--- - - - V , (  f v : " ' )  

- - V , j i .  JP 
a t  
_-  

We are now interested in the equation of motion for j 

_-- 8.i a ~ + ~ ( ~ ) a p +  a d s )  
a t  'at' at  a t  

- (9) 

Equations (8) have exactly the same form for 3He-A and superfluid 4He 
(Khalatnikov and Lebedev 1977, Pokrovsky and Khalatnikov 1976). On the other 
hand the equations forau"'/at are quite different. Therefore we first derive the equation 
of motion for p defined by (7 ) .  We have 

We add to the right-hand side of (10) the following identities: 

and 

As we have mentioned, formula (12) is valid not only for 3He-A but also for 
superfluid 4He. In the latter case we should put in (4) I = 0, U(') = V a  and take in ( 2 )  
d 8 = d8'4'. 

We now apply formula (12) to the case of 3He-A. From (2) we have 
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With the help of (13) and (4) the last two terms in (12) can be rewritten as 

Equation (12) is now 

with 

PP = TS + pp + (U(") - d " ) p  - 8. 
Now, using (15 ) ,  we are prepared to derive the equation of motion (9) for 3He-A. 
It follows (Khalatnikov and  Lebedev 1977) that 

and 

With help of ( 1 5 ) ,  ( 1 7 )  and (18)  we finally write equation (9) in the form 

where the stress tensor r k r  is 

(20) 
a8 

rk, = ~ l k ~ + j , v ~ ) + p k u ~ n ' + ( ~ , l s )  -+ rrTT,h. 
a v k r s  

From (19) it follows that for 3He-A the momentum densityj( t ,  x) is locally conserved 
when the local behaviour of curl Y'"( t ,  x) is described by the known Mermin-Ho 
formula (Mermin and Tin-Lun Ho  1976) 

For He-I1 formula (13 )  gives 

a8 a%"4) 
ax, axk 

- 

where d8 ' "  is defined by (4). In addition now in (17 )  d 8 " ' / d x k  vanishes as well as 
the last term containing 1, and its derivatives. We have, instead of ( 1 7 ) ,  the Landau 
equation 

av;' a 
p y =  - p - [ p + + ( u ' " ) * ] .  

a x k  
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The equation of motion for the momentum density is now of the form 

From (24) it follows that for He-I1 the momentum densityj( t ,  x) is locally conserved 
with, at ( t ,  x), 

This condition is not fulfilled along vortex lines. 

He-I1 if 
It follows from (24) that the momentum density can in addition be conserved in 

j x curl U(” = o 
but curl U(” # 0. In this case, therefore, j should be parallel to curl U(*) (e.g. should 
be tangential to a vortex line). 

For ’He-A the situation is more complicated. Now if, at some singular points, 
formula (21) is not fulfilled, the right-hand side of (19) can be equal to zero if 

where Z,, is defined by (21). 
We see that equations (17) and (20) have on the right-hand side the terms 

F‘” = -( j x curl U”)) - 9 P4’ = -( j x curl U‘”) (28) 

(where 9 is given by (21) and (27)) which, in the presence of the vortex lines, should 
in general be different from zero. In that case the momentum density will not be 
conserved. We must take into consideration the fact that the existence of the vortex 
lines violates the translation invariance in the system and in this case the momentum 
density should not be conserved. In the case of non-conservation in (19) and (24) the 
‘sources’ of the momentum ( F ” ’ ,  Fl4’) should appear. We consider these sources as 
external forces coming from the vortices and acting on the momentum (i.e. current 
density j ) .  On the other hand, from the point of view of the vortex dynamics, the 
vortex momentum density should be influenced by forces ( --Ft3’, -F‘4’) respectively. 
It means that the total momentum density (current vortices) will be conserved. 

In the case of the absence of the vortices (F‘” = 0) we can treat (19) as a new 
derivation of the Mermin-Ho formula. 

The problem of vortices was presented recently for superfluid ‘He (Glaberson and 
Schwarz 1987) and for ’He-A (Hakonen and Lounasmaa 1987). If  1 is uniform, 2T 
vanishes in (27) and, as in He-11, only singular vortices can be created. In the presence 
of spatially varying I (9 # 0) one can have continuous vortex texture (Hakonen and 
Lounasmaa 1987). 

For a classical liquid, the momentum density is defined by (Pokrovsky and 
Khalatnikov 1976) 

1 
P 

(29) j = p u  = p V a  + p +  U = v a  + - p  

and 

E =;pv=+ % d 8 =  T d S + p  dp. (30) 



714 Z M Galasiewicz 

In  formula (12) one should now put U(') = U(") = U and remember that according 

With the help of the equation 
to (29) U = ~ ( p ) .  

(in the paper of Pokrovsky and Khalatnikov (1976) the last term in (31) is omitted) 
we can get the proper conservation equation for j .  
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